If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2=1000
We move all terms to the left:
7x^2-(1000)=0
a = 7; b = 0; c = -1000;
Δ = b2-4ac
Δ = 02-4·7·(-1000)
Δ = 28000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28000}=\sqrt{400*70}=\sqrt{400}*\sqrt{70}=20\sqrt{70}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{70}}{2*7}=\frac{0-20\sqrt{70}}{14} =-\frac{20\sqrt{70}}{14} =-\frac{10\sqrt{70}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{70}}{2*7}=\frac{0+20\sqrt{70}}{14} =\frac{20\sqrt{70}}{14} =\frac{10\sqrt{70}}{7} $
| 5x+21=4.95/x | | 5x+21=4.95x | | 23x+6=6x-7 | | 10/16=x/144 | | x2-7x-13=5 | | 3(2x+5)-5x=3x | | 9x-6=2x | | 3^(2x-4)=(1/9)^(x+10) | | 14-n-5=5n+1 | | p3=38 | | -7-8(-2a+3)=-a+20 | | -37-5a=-3(6a+8) | | 3y-2(2y/4+12/4)=5 | | x+0.7x=0.2122 | | 0=9-2x-3x^2 | | 2f−–4=6 | | -x+6x=4 | | v3− –6=8 | | (d+3)/(4)=2 | | 3x²+8x+20=0 | | 6x2=49 | | 4(x-0.3)=5(2x-0.7 | | 3/4k+9=6k= | | 15+5x=70;x= | | 29=x/3-15 | | 3x²+2x=x4 | | 3x²+2x=(4) | | n3+9n-500=0 | | 3x²+2x=4 | | y/2+15=44 | | x+4.1=5 | | 3x-2=5x+12-2x |